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The practical problem of predicting the loss amount that
will hit an insurance company in the next very severe
wind storm has recently been analysed in the context of
extreme value statistics. The new assessment methods
proposed will be shown to be easy to apply and also well
justified from a theoretical point of view. It is also argued
that recent years’ windstorm and hurricane catastro-
phes could have been predicted by proposed methods.

Håkan Pramsten

On predicting the next
very severe wind storm loss

by fil.kand. Håkan Pramsten, actuary at Länsförsäkringsbolagens AB1

Although, due to genuine uncertainty, time,
place and amount for such an event seems to
be unpredictable, Rootzén et al [13] recently
report that such outcomes can, de facto, be
predicted and uncertainty can be measured.2

The ultimate aim of this paper is – in a less
technical way and requiring less mathemati-
cal skills – to make the insurance community
aware of this quite new risk theoretic ap-
proach, which is elaborating on an idea put
forward by the German insurance mathemati-
cian, Erhard Kremer [10], [11], [12]. It will
not only give a predicted monetary amount,
but also a measure of rational belief whether

1 Now Chief Actuary at WASA SAK Försäkrings-
aktiebolag.
2  This research has been supported by Länsförsäkrings-
bolagens forskningsfond.

1. Introduction

Losses caused by natural and man made ca-
tastrophes on human lives and welfare is a
recurrent threat to society. Without appropri-
ate measures, e.g. a reinsurance program
matching exposure, such events also jeopard-
ize the survival of any insurance company
exposed. This paper addresses in particular
the problem of predicting the accumulation of
losses due to a wind storm event. Planning
next year’s reinsurance cover, one crucial
figure, for any non-life insurance or reinsur-
ance company with a wind storm exposure, is
the answer to the question: ”What accumulat-
ed loss on a gross basis will the company
suffer, when hit by the most severe wind
storm event next year?”
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losses, adjusted for inflation, exposure and
climatological changes, hitting Länsförsäk-
ringsbolagen (LF) in 1982 until 1993.

The question now is, what could be said
about the most severe wind storm loss a
predetermined number of years ahead, con-
sidering the information available in the Fig-
ure 1 time series.

3. The prediction problem
in light of experience

The prediction problem is not an easy one.
This is illustrated by Figure 2, where the
events are ordered in magnitude according to
share of period total loss.

Figure 2. Events in Figure 1 ordered by
share of period total loss.

It can be seen that the big one in January 1993
amounts to one quarter of all losses during the
period. Also, the big one turns out to be three
times the second largest. What about the next
big one, then? Will it at most equal the biggest
one so far? Will it double it? Will it again be
three times the biggest one known before? Or
will it be even worse, say, perhaps ten or
twenty times as big?

Before 1993 the biggest loss occurred in
January 1983, rather early in the observation
period. Already one year later there was an-
other one almost as big. Yet we had to wait
another ten years for a new record event, but
– as we already have seen – when it occurred
it was three times the old record event. This
relation is not exceptional. In US the present

or not, in a specified amount of time, a loss
will occur in excess of the predicted amount
or not and, if so, by how much. It will also be
argued that the proposed methods, although
not yet fully explored, are of practical impor-
tance and well justified from a theoretical
point of view.

It may be that the audience gets alarmed by
the potential risk in wind storm insurance,
underwritten without any contractual aggre-
gate limit as illustrated in the worked out
examples below.

The paper is divided into two parts. The
first part is practically oriented, including
worked out examples of the proposed new
methods, showing how simple they are to
apply. The second part of the paper try to
prove that they are well justified from a theo-
retical point of view. At end there is a list of
questions still not resolved and needs of fur-
ther research.

Figure 1. Länsförsäkringsbolagen’s
adjusted wind storm loss amounts in MSEK
per episode 1982-93

2. The storm loss data used

For illustrative purposes the proposed tech-
niques will be used on data as in Figure 1. The
data should be viewed as 46 wind storm
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hurricane record, 1992 hurricane Andrew,
happens to be three times the former record,
1989 hurricane Hugo. In Japan the 1991 thy-
poon Mireille is at least six times the previous
worst case. In Europe the present record,
1990 winter storm Daria, doubled the so called
winter storm 87J, see [4]. Thus, perhaps un-
expectedly, when a wind storm or hurricane
record is beaten, then, by experience, the
excess loss amount can be overwhelming. As
will be shown in the worked out examples this
potential risk is a built in property of the
proposed methods.

4. Traditional accumulation
control methods

4.1. The concept of PML
The traditional approach seems to be to think
in terms of the worst possible event. The most
extreme position is to put an upper limit to
exposure in any one event by accumulation
control, summing up sums insured, and by
not underwriting beyond this limit, either for
the portfolio as a whole or by what is believed
to be mutually exclusive zones. We believe
this to be the original Probable Maximum
Loss (PML) approach in the context of wind
storm exposure.

The only information used in this approach
is sum insured on policies with wind storm
exposure, possibly with location of the expo-
sure. Here, oddly enough, loss experience,
thus, is thought of as containing no informa-
tion at all on future losses.

4.2. The engineering
simulation PML approach

A PML estimate like the one described above
is far too conservative, since most losses in
wind storm insurance are only partial losses.
Accordingly, companies and risk assessment
agencies today seem to be less restrictive and
allow for an ”engineering simulation PML”
approach, which typically accounts for par-

tial losses by means of modelling loss ratios
as some function of the maximum of mean or
gust wind speed. When such a function has
been accomplished it is applied either to his-
torical events with known maximum wind
speeds at different locations but with todays
exposure, or else to some kind of ”worst
case”, as to path and as to maximum wind
speed.

From a methodological point of view there
appears to be at least three serious draw backs
with this approach. Firstly, a worst case pre-
diction necessarily is ambiguous; it may be
that no two opponents can agree on the same
worst case. Secondly, the prediction error
seems to be unmeasurable, i.e. the quality of
the prediction will be unknown. Thirdly, per-
haps less obviously, according to experience
the modelling of the complex physical proc-
esses which are supposed to cause the damag-
es turns out to be rather delicate.

This approach typically requires a lot of
information: for each event
• wind velocities
• sum insured
• loss incurred
distributed over a grid surface of suitable
resolution. Thus, the data in Figure 1 alone is
not sufficient in this approach.

5. Quantile PML – a new means
for accumulation control

In this paper our main objective is to present,
in the context of assessing wind storm expo-
sure, the quantile PML concept. This ap-
proach is in the tradition of economic deci-
sion theory, which postulates that optimal
business decision making involving an un-
certain outcome, has to consider all possible
outcomes and their associated probabilities.

The quantile PML concept was introduced
by Kremer [10],[11],[12] and recently further
explored by Rootzén and Tajvidi [13], as an
alternative risk assessment method. From a
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statistical point of view the concept is trivial.
To the layman the ”p×100:th upper quantile”,
xp , is a statistical concept denoting a quantity
along the x-axis such that there is a certain
probability, p, to obtain a random outcome
equal to or in excess of xp , see Figure 3.

Figure 3. The probabilty distribution function
and the upper 5% quantile
of a continuous random variable.

Thus, percentiles are points along the x-axis,
such that the distribution function grows one
percent unit moving right from one percentile
to the next. If the distribution is concentrated
in a small interval, then the percentiles will be
close to each other in that interval; if the
distribution is dispersed, as is the case with
wind storm losses, then the percentiles will be
spread out. Accordingly, the perhaps more
familiar ”quantiles” known as the quartile
and the median cuts the distribution into piec-
es such that each interval contains 25% and
50% of the distribution, respectively.

On time horizon T years ahead the upper
p×100% quantile PML, xT,p in the model
discussed in Section 7.3.3 below is given as

where p is a number in the interval [ 0,1] , and

(u, λ, σ, γ) are unknown parameters to be
suitably estimated. Formula (1) is defined in
the context of the Generalized Extreme Value
distribution (GEV), which will be explained
in Section 7. The formula (1) is derived from
(14) by solving for x.

Example 1. For the LF portfolio it seems
reasonable to let (u, λ, σ, γ) = (0.9, 3.83, 3.87,
0.7).3 Inserting this into (1) and using xT,p =
(1, 0.1), gives

which should be interpreted as follows: ”Look-
ing one year ahead the upper 10% LF-group
quantile PML in this example is estimated to
be 66 million Swedish crowns.” Or, equiva-
lently: ”The probability that the most severe
wind storm loss one year ahead will exceed
66 million Swedish crowns is estimated to be
10% for a portfolio like LF’s.”

Table 5.1 summarizes other quantile PML
estimates when the same procedure is used
for selected values of (T,p).

Table 5.1 Estimated quantile PML for
various risk levels and time periods

Risk 1 year  5 years 15 years
 ahead  ahead  ahead

10% 66 215  473
1% 366 1149 2497

At this stage, it is essential to point out the
difference between formula (1) and values
obtained by (2) from a methodological point
3  According to statistical practice the ” ^ ”-sign above a
parameter indicates that the true value is unknown and
has been replaced by an estimate. How the estimated
parameter values has been selected will be explained in
Section 8.2.

(2)

y = 0,95

(1)

x0.05

1
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^     ^     ^    ^
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of view. It is important to realize that this
difference has far-reaching implications, when
results obtained are evaluated by decision
makers, i.e. top management. Thus, by vary-
ing p in (1), for known values of (u, λ, σ, γ),
the obtained values of xT,p  reflects genuine
uncertainty of the natural phenomenon which
governs wind storm loss. Without altering
underwriting guidelines or building construc-
tion regulations, this uncertainty can not be
reduced. Management just have to live with
it. Decision makers, however, are even worse
off, since they are not fully informed on the
loss generating process. Thus, although – at
the very best – our model perhaps is (approx-
imately) correct, yet the true values of the
parameters are unknown and have to be estima-
ted from experience. But since experiences
change over time, so do the estimates, thus,
illustrating that values computed from (2)
necessarily also include a statistical uncertain-
ty, which is added to the unavoidable genuine
uncertainty already commented on. The point
is illustrated in the following example.

Example 2. Suppose that company board
management guidelines state that there has
to be a cover for the company portfolio such
that expected waiting time for a wind storm
loss in excess of the cover will be at least 100
years. Suggesting a cover ending at 366 MSEK
from Table 5.1 might then be too optimistic,
since management don’t know if this is the
true value of the first percentile from above or
not, since it is estimated. It can be in error. If
the true model, given by (1), were known it
might be that the level 366 MSEK was more
like, e.g., the fifth percentile from above,
making expected waiting time equal to 20
years instead. Taking this into account, man-
agement have to be cautious and decide on a
more conservative estimate than the values
suggested by Table 5.1.

The statistical estimation problem will be
discussed further below. It will be seen that

the problem neither can be neglected nor that
it yet is fully resolved. Still, for the time being,
postponing this problem, suppose the quan-
tiles given by (2) are true. Then from Table
5.1 the expected waiting time for a loss in
excess 66 MSEK is ten years, which is well in
accordance with observed data. The very same
model predicts expected waiting time for a
loss in excess of 366 MSEK to 100 years. This
predication can not be evaluated by a compar-
ison with data available, since the observa-
tion period is too short. But this is not a reason
to reject the prediction. On the contrary, we
argue that since (2) predicts ”the ten year
recurrent wind storm event” well according
to data, then it might be that it also predicts
”the one hundred recurrent wind storm event”
properly.

The prediction arrived at is also supported
by empirical evidence already reported, why
it is hypothesized that last years world wide
wind storm catastrophes, i.e. 1990 winter
storm Daria, 1989 hurricane Hugo, 1992 hur-
ricane Andrew and 1991 typhoon Mireille, all
could have been predicted by the quantile
PML approach.

6. The Spill Over distribution

The most common wind storm reinsurance
cover is the per event excess of loss (XL)
cover. From such a cover the recovery is ”at
most l in excess of r, each and every wind
storm event”. Here r is the cedent’s retention
and l is the limit of the cover. Thus, in each
and every wind storm event, the reinsured is
exposed to ”planned” losses for own account
less or at most equal to r. But, because of the
limitation of the cover, due to cedent’s cost
considerations or limited market capacity, the
cedent is also exposed to all ”unplanned”
losses in excess of  r + l. In the terminology of
reinsurance such losses are called  ”spill over”
losses. With  limited cover such losses can not
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be neglected from a logical point of view, but,
using the traditional PML approach, in prac-
tice they often are, recently with fatal conse-
quences for some companies.

Suppose that the next loss will be a spill
over loss. The crucial question to the compa-
ny then is, what size of loss can be expected.
Again, with reference to extreme value statis-
tics (cf. Section 7.3 below) and with  v = r +
l - u, it can be argued that the function

could be used to calculate the probability of a
spill over loss, S, of at least size x. Inserting
r + l = u + v = 850  and once again using LF
estimates (u, σ, γ ) = (0.9, 3.87, 0.71) the
Figure 4 is obtained.

Figure 4. Estimated conditional probability
that a spill over loss will exceed x MSEK
excess 850 MSEK.

Putting (4) equal to 0.5 and solving for x, it
follows that the median m (r + l) of a loss
excess of reinsurance limit r + l = u + v

  σm (r + l ) =  λ  (2
λ – 1) + v

 
(2λ – 1)      (4)

where still v = r + l – u.

Example 3. With r + l = u + v = 850  again,
the LF-group estimate becomes

Thus, given the mathematical model, the LF-
group parameter estimates, and an assumed
per event catastrophy XL cover ending at
MSEK 850, we estimate that a spill over loss
is above MSEK 548 is as likely as a spill over
loss below MSEK 548.

In practice, again, decision makers have to
consider the statistical errors contained in the
curve in Figure 4 and the estimate (5), and
analyse them according to the principles dis-
cussed in Section 8.

7. The modelling of
maximum loss amount

7.1. Introduction
Embrechts et al [5] and Beirlant et al [1]
discuss modelling of extremal events in insu-
rance from a mathematical point of view.
Early Swedish contributions are Benktander
[2] and Jung [9].

In practical wind storm loss modelling the
most compelling question is, if the existence
of such a model can be justified by rational
reasons. The question posed will not be an-
swered here. Instead we will tactically show
that, if it is reasonable to model wind storm
losses, then the proposed approach seems to
be the only possible one.

The model from which formulas in Sec-
tions 5 and 6 are derived are not new. E.g.
Hosking et al [8] report that the same ap-
proach is widely used in United Kingdom to
model annual maximal flood level arising
from separate wind storm events.

0 500 1000 1500 2000
x

(5)

(3)

^     ̂   ^
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x = 548

y = 0,5
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7.2. The notion of
maximum loss amount

In the context of rate making, the probability
distribution of period total claim amount has
been analysed extensively in the mathematical
theory of risk, or often simply, ”risk theory”.
The probability distribution of the maximum
individual loss within a certain period of time,
is related to the distribution of period total
claim amount, since it is contained in that
total, sometimes with a great influence on the
distribution, affecting e.g. rate making. Still it
has been considered far less in risk theory so
far.

Besides, the distribution of the maximum is
of interest on its own, since it in a certain
sense mirror relevant total exposure to a single
natural or man made disaster, which in many
countries is supposed to be limited according
to public supervision and regulation condi-
tions.

Using powerful standard mathematical no-
tation, it is a very simple exercise to write
down a true expression for the maximum
individual gross loss amount, MN , for a book
of business underwritten during a certain pe-
riod of time. The maximum individual loss
among the N losses occurring, X1 , .....,XN,
can, thus, simply be written as

MN = max (X1, .....,XN) (6)

Seen as a mathematical function, the max-
function simply returns the largest outcome
obtained.

Using order statistics notion, the expres-
sion for MN  could be further simplified as

M = X [1:N] (7)

where X [1:N], X [2:N], ....X [N:N] denotes the N
observations (X1, .....,XN) ordered decreas-
ingly by size, i.e.

X [1:N]  >  X [2:N] > .... > X [N:N]

However, to be of any value in practical
decision making, we have to look for a means

to distribute total mass of probability over all
possible outcomes of MN..

7.3. Modelling the distribution of
maximum loss amount
7.3.. Asymptotic theory

In asymtotic theory the behaviour of a ran-
dom variable, such as e.g. MN , with a distribu-
tion which depends on size, N, is analysed in
the case where one let N grows towards infin-
ity, i.e. one assumes access to a sample of
unlimited size. Maybe unexpectedly, it often
turns out that mathematics can be simplified
by doing this. The logic of the reasoning is: if
there is an asymtotic distribution, then the
finite distribution will come successively
closer – or converge – towards this limiting
form, step by step, when sample size is in-
creased. If the limiting distribution exists, it is
further hopefully assumed that the limiting
form can be a good substitute or approxima-
tion for the exact finite distribution which is
not obtainable.

Early useful asymtotic results on the distri-
bution of the maximum, MN , in a sequence of
random variables goes as far back in history
as to a famous 1928 paper [6] by the two
distinguished English statisticians, sir Ron-
ald A. Fisher and L.H.C. Tippett. In that paper
they proved a theorem which afterwards some-
times is considered ”the fundamental theo-
rem of extreme value theory”. They proved
the following remarkable result:

Theorem.  (Fisher-Tippett Limit Law of Maxi-
ma Theorem) If the distribution functions of
the maximum in a sequence of maxima {MN ,
N  = 1, 2, ...} = { max  (X1, .....,XN), N = 1, 2,
...)}  converges to a non-degenerate distribu-
tion function, G (x), under a linearly normal-
ization, i.e. if, when N → ∞ , we have

P ((MN – aN ) / bN = < x) → G (x) (8)

for some constants aN  and bN > 0, then G (x)
has to be
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for some shape parameter γ,  location param-
eter µ and scale parameter σ >0.

The ”+” signifies ”positive part”, which means
that x+ = max ( 0, x ).

The quoted theorem uses a strict mathemat-
ical language. For practical purposes, howev-
er, it simply states as an unavoidable logical
truth, that if there is a linear normalized lim-
iting distribution for the maximum outcome
in your application, then it has to be on the
form (9). However, it doesn’t state, that the
maximum outcome in your application has
such a limiting distribution. It just says, if
there is one, then it has to be (9). Another
possibility is that there is no limiting distribu-
tion, or – typically if the outcomes are limited
in size upwards – the distribution will be
degenerated and equal this limit with pro-
bability one.

The distribution function G in (9) is known
as the Generalized Extreme Value distribu-
tion (GEV). It is a result in what has been
called ”classical extreme value statistics”.

7.3.2. Compound loss distributions

The result in the preceding Section may be
important in some cases, but yet it seems ill-
conditioned in the context of predicting the
most severe wind storm loss next year, since
the assumptions do not fit nicely into the
problem at hand. E.g. we do not expect a lot
of wind storm events in any year.

Still the classical model has proved useful
through a re-parametrisation suggested by
the so called ”peaks over thresholds” (POT)
models of modern extreme value statistics.
These models allow for a compound loss
distribution, i.e. a loss generating process
which is built up by two different random

processes; one describing the occurrences of
losses in time and another describing loss
severity when a loss actually occur. This is
similar to the most common approach in
modelling total claim amount, historically
known as ”collective risk theory”, see e.g.
Daykin et al [3].

Before discussing POT models in more
detail, we have to present one important can-
didate of each kind; the Poisson distribution
and the Generalised Pareto distribution, re-
spectively.

The occurrence distribution candidate is
the much used Poisson distribution. It can be
defined in the following way:

Definition 1. A random variable, N, which
has a probability function of the following
form

when x = 0, 1, 2, ... is said to have a Poisson
distribution.

A typical case where the Poisson distribu-
tion is called upon is given in the following
example:

Example 4.  Suppose wind storm events oc-
cur purely randomly in time. We state, with-
out a lenghty discussion on what is meant by
”purely random” and on mathematical de-
tails, that traditional mathematical model-
ling of this situation ends up with the Poisson
point process for the occurrences, and the
Poisson distribution, as given by (10), as the
counting process counting the wind storms
occurrences per every T years. Thus, with N
denoting the random variable ”number of
wind storm events in next T  years”, N has a
Poisson distribution and the probability of
the event ’N = x’, is given by (10), where λ  is
a parameter denoting an unknown, theoreti-
cal entity properly interpretable as ”the ex-
pected number of wind storm events per year”.

(9)

(10)
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A less traditional statistical distribution in
insurance is the Generalised Pareto distribu-
tion:

Definition 2. A random variable, X, which
has a probability distribution function on the
following form

when 1 + γ x/σ >0 is said to have a General-
ised Pareto distribution (GPD).

Here σ > 0 is a scale parameter, which means
that using (11),  σ  has to be adjusted accord-
ing to the unit of measurement in use. The γ
parameter is a shape parameter, which can
take any value. The ”+” signifies ”positive
part”, which means that for γ  negative, H (x)
= 1 for x > σ / γ, i.e. the distribution has the
positive finite endpoint σ /γ. The special
cases γ   =  – 1 and γ  = 0 yield, respectively the
uniform distribution on interval (0, σ) and the
exponential distribution with distribution
function

H (x) = 1 – e – x / σ , for x > 0 (12)

If γ > 0, which is to be expected in insurance
applications modelling large claims, then (11)
is close to the, so called, Pareto distribution of
the first kind, defined by the distribution
function

when α, c > 0, and x > c. In Rytgaard [14] this
is called the ”European” Pareto distribution.
It is extensively used in insurance and rein-
surance rate making. In (13) c is the scale
parameter, which typically is supposed to be
controlled by the researcher and typically
used as the ”data capture limit” (Hesselager
[7]) and α  the shape parameter to be estimat-

ed. This is not the case in (11), where σ and γ
both are supposed to be estimated simultane-
ously. However, we will see later that when
GPD is used in a POT model, it is used to
model outcome Y = X – u, which is an ob-
served outcome X minus a fix ”high level”, u,
i.e. a new parameter to be introduced, with an
interpretation similar to c in (13).

In the case where γ  > 0, suppose Y = X – u.
Then, as demonstrated in Rootzén et al [13],
the relationship between (11) and (13) is:

i) If X has a Pareto distribution of the first
kind, given by (13), then Y  has an exact
GPD, given by (11), with    σ  = uα and
γ = 1/α

ii) If Y  has a GPD, given by (11), then the tail
of X is approximately equal to that of a
Pareto distribution of the first kind, given
by (13), since when x → ∞ we have

which is (13) with constant  = c1 / γ and
α = 1 / γ

Taking nothing else into account, GPD
seems to dominate Pareto, as a more flexible
distribution with a wider range of application.
This is the case also in the context of insuran-
ce. In the LF case, this extra flexibility was
useful in [13], since there is a good fit of the
wind storm losses to a GPD, but deviations
from a Pareto distribution were detected.

7.3.3. The POT model

We are now well prepared to introduce the
POT model in the context of company losses
caused by wind storm insurance. Interested in
large claims only, we consider modelling
losses in excess of a suitably chosen ”high
level” u. We assume that the number of wind
storms causing losses in excess of u is gener-

(11)

(13)
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ated by a Poisson process, so that the random
number of such event per year, N, can be
modelled with a Poisson distribution, given
by (10). Next we assume that for each such
occurrence, the severity of the loss is generat-
ed by a process, such that the loss amount
exceeding u, i.e. Yi = Xi – u, i = 1, 2, ...., N, has
a GPD, given by (11). At last we make the
usual independency assumptions, i.e.

• Y1 , Y2, ...., YN are independent of each
other, and

• the distribution of each of Y1 , Y2, ...., YN  is
also independent of N.

If these assumptions hold (approximately)
true, then, looking T years ahead, it is a logical
necessity that the probability that the maxi-
mum loss,  MT, in that period, will be at most
u + v, is (approximately)

P ( MT < u + v ) = e – (1 + γ A (v,λ T, σ, γ )) 
–1/γ

      (14)
where

when ν > 0, which is the GEV defined by (9),
with GEV parameters (µ, σ′, γ′) equal to
{((λT)γ – 1)  σ/γ,   σ (λT)γ, γ are the parameters
in the compound Poisson/GPD model for the
maximum, MT , T years ahead. However, since
the Fisher-Tippett theorem holds asymptoti-
cally, formula (9) is only approximate for
finite sample sizes, while formula (14) is
exact, provided that the peaks over tresholds
model is true.

If the compound Poisson/GPD model holds
true, formula (14) can be used to compute the
probability of any event involving MT .

Example 5. Using LF parameter estimates
used in Section 5 and 6 again, letting u + v =
136 , i.e. current LF record loss, and neglect-
ing impact of statistical error, then the prob-
ability of a new LF wind storm loss record
next year is, with

A (135.1, 3.83, 3.87, 0.71) = 12.589

inserted into (14)

P (M1 > 136 = 1 – P (M1 < 136) =

= 1 – e (– 1 + 0.71 × 12.589) – 1/0.71 = 0.039

or 3.9%. Thus, with current exposure and
constant money value, the expected waiting
time for a new record loss seems to be 1/0.039
≈  26 years.

Example 6. Given a per event XL-cover end-
ing at r + l = u + v = 850 and LF parameter
estimates, again neglecting the impact of
statistical error, then the probabilty of a next
year spill over loss becomes, with

A (849.1, 3.83, 3.87, 0.71) = 83.697

inserted into (14)

P (M1 > 850 = 1 – P (M1 < 850) =

= 1 – e (– 1 + 0.71 × 83.697) – 1/0.71 = 0.003

or 0.3 %. The expected  waiting time for the
recurrence of the event seems to be
1/0.003=333 years.

7.3.4. Some properties
of the POT model

With reference to some important properties
which holds for the POT model given by (14),
Rootzén et al [13] argues that this statistical
model is almost the only possible one. Two
such properties given in the following two
propositions characterize GPD. This means
that given a certain property, this property
uniquely determines a certain family of distri-
bution functions which have the property and
all others do not have the property.

Proposition 1. The POT model is character-
ised by being stable under an increase of the
level.

Proposition 2. The Fisher-Tippett Limit Law
holds if and only if the POT model holds.

The first proposition says: If excesses over
level u come as a Poisson process and the
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sizes of the excesses are GPD and independ-
ent, then the excesses over a higher level  u+v
(for u>0) belong to the same families of
distributions; the excesses over u+v have a
Poisson distribution and the sizes of the ex-
cesses are again independent GPD. No other
distributions have this property. Thus, sup-
pose you insist on the same model for any
high level u, then the POT model is unavoid-
able. All other choices means that if u is
altered, then the families of distributions in
your model also have to be altered.

The second proposition brings a similar
message: Accepting the existence of a limit-
ing distribution for the maximum is equiva-
lent to accepting that observations are gener-
ated by the POT model.

8. Statistical estimation in the
peaks over tresholds model

8.1. Inference of unknown
true model behavior

from sample information
Here we will recall the problem going from
e.g. formula (1) to (2). When theoretical mod-
els and reasoning are applied in practical
decision making, one critical and often ne-
glected step in the decision process is the
substituting of unknown parameters in the
theoretical models with actual numbers con-
sidered for the numerical calculations. In the
context of mathematical statistics the art of
doing this is a most important area of re-
search, alternatively known as Theoretical
Statistics, Statistical Analysis, Statistical In-
ference or Statistical Estimation. Scientists
specializing in this area are concerned about
the fundamentals and methods of scientific
inference. From a statistical point of view the
problem posed is the following: ”What can be
said about a population of measurements,
when all we got is a sample of measurement
from that population?” Or adopted to risk

theory context: ”What can be said about the
unknown parameters in a hypothesized claim
generating process, which over time will gen-
erate an unlimited sequence of claims, but of
which only a subset has been reported up to
today?”

In Sections 5 and 6 we argued that limited
model knowledge force decision makers to
apply estimating procedures in decision mak-
ing, and that this is making risky decision
making even riskier. There is, thus, a need to
reduce the added estimation risk as much as
possible by arriving at estimates with a min-
imal error. Statistical modelling makes esti-
mation error observable and measurable. To
the general public this approach is standard
today in the context of professionally con-
ducted surveys or polls, where estimated num-
bers always come together with estimates of
margin of error.

8.2. Estimation principles
and efficiency

Statistics is about analysis of data. Conse-
quently statistical estimation assumes that
there are some data available carrying infor-
mation on the distribution function to be
estimated. How to do it might at first glance
seem totally ambiguous. However, there are
principles to rely on. Applying such princi-
ples results in quantities which are functions
of observations. Such functions are essential
to statistical estimation and such a function is
most often called an estimator. Since in analy-
sis the observations themselves are consid-
ered to be random, estimators also become
random variables.

An estimator which in some well defined
sense tends to produce estimates closer to the
unknown true value than any other proposed
estimator usually does, can be considered
optimal or efficient in this sense. The analysis
of the behavior of estimators is therefore an
important field for research.

One estimation principle often used is just
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an advice to adjust the unknown distribution
function by replacing the unknown parame-
ters in such a way that the first low moments
in the theoretical and empirical distribution
function coincide. This technique is known as
the Method of Moments (MOM). The related
method of Probability Weighted Moments
(PWM) has proved useful when looking for
estimators for GEV and GPD. The corre-
sponding estimators are called method of
moment estimators and probability weighted
moment estimators, respectively.

However, the most popular approach today
is to apply the maximum likelihood (ML)
principle, originally suggested in a 1922 pa-
per by Ronald A. Fisher. His principle turns
an estimation problem into an optimization
problem. According to the likelihood princi-
ple a set of unknown parameters ought to be
replaced by values such that the probability of
obtaining the observations obtained is maxi-
mized. The popularity of the likelihood ap-
proach is due to the fact that when there is an
optimal estimator in a given application, then
it often turns out, that this is the estimator
derived according to the maximum likeli-
hood principle. This is particularly true in
large sample context. In small samples, how-
ever, the maximum likelihood estimators can
sometimes be inferior to others.

8.2. Estimation in the POT model
8.2.1. Introduction

Estimation in the POT involves estimation of
λ in the Poisson distribution, σ and γ in GPD
and u in the compound POT model.

Monte Carlo simulation experiments re-
ported in Rootzén and Tajvidi [13] suggest
that LF wind storm quantile PML estimates
by formula (2) can deviate considerably from
the true value. It also turns out that properies
of present standard methods are not yet fully
explored.

8.2.2. Estimating Poisson
parameter λλλλλ

Given NS = N1 + N2 + .... +Ns wind storm loss
events in each of year 1, 2, ..., s, the most
natural estimator of λ is

which also is optimal in the sense of statistical
efficiency. Putting s = 12 and observed Ns
into (15) gives

which is used throughout in the examples.
The estimation in GPD is less obvious, but

has been considered by Hosking et al [8].

8.2.3. Estimating ( σ, γ ) ( σ, γ ) ( σ, γ ) ( σ, γ ) ( σ, γ ) in GPD

Hosking et al [8] report on the ML, MOM and
PWM estimators of GPD parameters (σ, γ),
respectively, the asymptotic properties of the
different estimators, and on asymptotic meth-
ods for estimating statistical error. Small sam-
ple properties are examined with Monte Car-
lo simulation.

The estimating functions will not be given
here, but can be found in the Hosking and
Wallis paper, from which we summarize:

1 the second moment of GPD doesn’t exist
for γ > 0.5, which means that in this case
MOM can be expected to perform less well,

2. in the context of PWM two different, as-
ymptotically equivalent, estimators are pro-
posed, one using the sample ordered by
size, the other using the empirical distribu-
tion function,

3. the ML estimators can not be given in
closed form and have to be obtained by
numerical methods,

(15)
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4.Monte Carlo simulations suggest that un-
less sample is 500 or more, estimators de-
rived by MOM or PWM are more reliable
than those derived from ML principle, for
1/2 < γ < 1/2.

In estimating a LF wind storm loss GPD on
losses as reported in Figure (1), PWM and
ML estimators performed similar, but Rootzén
and Tajvidi suggest the ML estimates (σ, γ) =====
(3.87, 0.71) to be used in the examples, since
the PWM estimators seem to systematically
produce heavy underestimates on estimating
quantiles in the POT model.

8.2.4. Estimating u
in the POT model

For the choice of u in the POT model it is
reported that there are theoretical sugges-
tions, but they don’t seem to solve the practi-
cal problem. Instead the choice of level has to
be made from subject matter knowledge, from
looking at different diagnostic plots, e.g. QQ-
plots, mean excess or median excess plots,
and on experimenting with different levels. If
the model produces very different results for
different choices, the result of course should
be viewed with more caution.

For LF wind storm data Rootzén and Tajvidi
used û  =  0.9, which has also been used in the
numerical examples.

8.2.5. Estimating  xT, p
in the POT model

Using proposed estimators and reported esti-
mates finally gives formula (2) as the used
estimate of LF wind storm quantile PML,
xT, p , in (1). Monte Carlo simulation experi-
ments suggest that this estimator produces
less biased estimates than present small sam-
ple standard suggesting PWM estimators. Still,
the quantile PML seems to be systematically
underestimated. Depending on γ, Monte Carlo
simulation experiments by Rootzén and Taj-
vidi suggest that the median of such estimates
underestimate true value in the range of 10-

15%, when sample size n = 46. The down-
ward deviation from true value can be consid-
erable, with first quartile in the simulated
distributions in the range of only 55-70% of
the true value depending on γ. That is, 25% of
simulated estimates are even worse off, mean-
ing that there is a non negligible risk that the
point estimates in table 5.1 are too optimistic.
Also, standard small samples methods for
interval estimates are reported to have much
lower coverage probabilities than the nomi-
nal.

9. Summary and
needs of further research

It has been shown that formulas (1), (3) and
(4) are extremely easy to apply, given esti-
mates on the unknown model parameters.
Also several theoretical arguments have been
put forward justifying them from a theoretical
point of view. Thus, in summary the proposed
methods turn out to be

• far more powerful, versatile and easier to
apply from a practical point of view than
tools traditionally used

• well motivated and – as it seems – the only
possible ones from a theoretical point of
view.

The approach proposed seems also to be the
most parsimonious one, since the calcula-
tions just depend on total losses in the ob-
served events, as in Figure 1. However, a
more elaborate extreme value model, which
takes individual claims, spatial and climato-
logical information into account, might pos-
sibly reduce the statistical error and give
improved predictions (Tajvidi [15]).

Below, finally, follows a list of areas where
further research is needed:

1.bias reduction and small sample interval
estimates for the estimators in the POT
model

2.use of information on individual claim siz-

^    ^
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es and on the distribution of the number of
claims in the estimation of accumulated
loss sizes

(a) in order to facilitate and improve on
exposure adjustments due to changes
in policy wording, social inflation and
market shares over time

(b) as a means to reduce sampling error, if
possible

3.use of meteorological information to im-
prove parameter estimates

4.  Bayes and credibility methods for the POT
model

5.accumulation control methods for a rein-
surance company

6.developing decision making rules, as a sup-
port to management to decide on company
optimal trade off between spill over risk
and other company goals.
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